
Table Of Contents

PREFACE

CHAPTER 0: PREPARING THE ENVIRONMENT

INTRODUCTORY

CHAPTER 1: VARIABLES!
CHAPTER 2: FUNCTIONS!
Exercise #1 - Your first program!

CHAPTER 3: OPERATORS IN C
CHAPTER 4: CONDITIONS - IF/ELSE STATEMENTS AND SWITCHES
CHAPTER 5: LOOPING - FOR() AND WHILE() LOOPS
CHAPTER 6: CONTAINERS OF VARIABLES - ARRAYS AND STRUCTURES

PRACTICAL USE OF LIBNDS

CHAPTER 1: INPUT – KEYS AND STYLUS

INTRODUCTION TO DS HARDWARE:
CHAPTER 1 – RAM AND VRAM
CHAPTER 2 – OAM AND 2D SPRITES

PRACTICAL USE OF NIGHTFOX LIB

CHAPTER 1 – NIGHTFOX LIB INTEGRATION PART 1
Additional Utilities - Chapter 1 - GRIT

CHAPTER 2 – NIGHTFOX LIB 2D MODE-0 PART 1 - TILED BACKGROUNDSCHAPTER 2 – NIGHTFOX LIB 2D MODE-0 PART 1 - TILED BACKGROUNDS

CHAPTER 3 – NIGHTFOX LIB 2D MODE-0 PART 2 - TILED SPRITES

Exercise #2 - MODE-0 Tiled Backgrounds Example

Exercise #3 - MODE-0 Tiled Sprites Example

Exercise #4 - Our very first game: Tic Tac Toe!

Written by Foxi4

Revised by Pomegrenade

Preface

Hello and welcome! If you are reading this then it’s likely that you’re interested in getting to know more about
programming for the Nintendo DS! If you are not, then you likely took the wrong turn, but let’s not get into that.

Let’s also start with establishing one important thing – as the title suggests, this is a “From Zero to Hero” guide. If
you are an experienced programmer then it is likely that you will not benefit from it much, if at all. It is going to
introduce the very basics to users who have never even seen a compiler before and never coded in their life – stuff
that you probably already know and aren’t interested in anymore. You are however still welcome as this is my first

tutorial and will likely require a certain degree of proof-reading, plus, you may of course have useful suggestions!
Keep in mind the target audience though; I’m doing my best not to introduce complicated concepts early on. If you’re
not an experienced programmer or never programmed at all, this is a great place to start!

I’ve seen many guides approaching this subject – some were more helpful, some were rather vague, but there is one
thing that was common in all of them, and it became apparent to me that something has to be done about it.

The guides I’ve seen so-far are dedicated to users who are familiar with programming and only require an
introduction to the DS environment; none of them are actually “tutorials” from the ground up. Does this mean that a
non-experienced user simply cannot program for the DS or should not begin his adventure with programming on this
exact platform? No, it does not! In fact, the DS is likely the easiest platform to program for when it comes to consoles
– libnds is really not that hard to wrap your mind around and there are numerous libraries out there that facilitate

programming for it even further.

You probably want to ask: “If it’s so easy, why do you think it requires some sort of an explanation? The libraries are
well-documented, do you expect the readers to be dill-wits who can’t follow simple examples?” and the answer to that
is “No, in fact, I do believe that everybody is capable of programming, however one has to learn and acquire some
basic programming habits and have some practice in C to be successful at it” and this is exactly the main goal of this
tutorial. Depending on the interest shown by users and my workload at Uni this may or may not be a full-featured

guide, however I promise that I will at least try to keep it up-to-date and expand upon it from time to time.

Now that the purpose is established, let’s move on to the juicy parts! I hope you will enjoy learning together and in
case of any questions or suggestions, do write! Dear readers, keep in mind that the first few tutorials will be an

incredibly rapid course in C, applicable to any type of programming, not just for the DS! We won’t be compiling much
until this material is covered and thoroughly understood! So… Let’s get it on!

Chapter 0: Preparing the Environment

Alright then! We’ve established our goal; it is time to make the first steps towards it! For the duration of this course

we will be using the C language which is versatile and simple enough to understand. We’ll program in the Visual
C++ Express 2008 and we’ll be using NFLib by NightFox and Co. as our graphics library so that graphics do not
impede our progress, but we’re miles before getting there. First and foremost, we need to start up our download
queue, and we’ll need plenty-fancy things!

Firstly, we of course need the devKit Pro toolchain, available here:
http://sourceforge.n...ed%20Installer/

Next, we need to get our hands on the code editor:
http://msdn.microsof...future/bb421473

We will also need Drunken Coders’s Wizard to add a Nintendo DS application (among others!) as a project type:
http://pern.drunkenc...udio_wizard.zip

Finally, we’ll download NightFoxLib:
http://sourceforge.n...ts/nflib/files/

Once all the files are downloaded, proceed to installing them, starting from devKit Pro (preferably on C:\), next the
Visual C++ Studio Express 2008, the Drunken Coders’s Template Wizard and finally NightFox Lib (preferably in the
devKit Pro directory).

Now we have our programming environment ready! Exciting, isn’t it? Well, not quite. Why? Because now we have to
move onto the Introductory chapters of this guide – they may be boring and taxing but without them we will not be
able to really program anything as everything you will be reading from now on will sound like black magic before this
knowledge sinks into you, at least partially. Thus, without further ado, we move onto…

Introductory
Chapter 1: Variables!

To even have a chance at programming something, we need to know what we’ll be dealing with. Introductory
Chapter 1 will introduce the first important subject – Variables, your main weapons when it comes to programming.

So, what is a Variable? Well, in layman’s terms, a variable can be just about “anything” – it can be a number, a
character, literally anything, but to simplify it, we’ll say it is a value, a piece of data that is kept in the console’s
memory for later use. In most tutorials you would see a link to a Wikipedia article or a reference to a book that will
introduce you to the subject – not here. We want to get from Zero to Hero and we want to get there fast, don’t we?
As far as we’re concerned, we could possess all the knowledge about the variables and we still won’t be able to use

them anyways! I will only pass onto you the knowledge that will actually be relevant to you, so bear with me.

Let’s start with describing how to declare a Variable:

Type Name = Value;

Your typical variable has four identifying features – a scope, a type, a name and a value. First and foremost we
will tackle types, as they determine how we will actually use a given variable.

We can divide our variables into 3 main groups – Integers, Booleans and Chars.
Those can be Signed or Unsigned (except Booleans), plus Integers may range from 8 to 32 bit ones (even 64 on
PC’s, but let’s not go ahead of ourselves). Sounds like black magic so-far? Good, cause we’re going to explain what all
that means, starting from types and their properties:

Signedness is the first property we will discuss. One could write a whole elaborate essay on the differences between
signed and unsigned variables. What you need to know is that Signed variables range from negative values
throughout 0 and positive values while unsigned ones range from 0 upwards. That’s it, really. That’s all you need to
know!

Next, we’ll tackle the lovely Integers. As I said, Integers on the DS may consist of 8, 16 or 32 bits, but what does
that mean, exactly? Well, it means what range of values a variable will be able to carry! For example, an 8-bit
integer will have a length of 255, meaning it will range from -128 to 127 when signed and from 0 to 255 when it’s
unsigned. A 16-bit one will have a length of 65,535 while a 32-bit one, a length of 4,294,967,295.

To use them, we will have to learn how to declare them! The symbols used to refer to those integers are u for

Unsigned, s for Signed, followed by the length in bits, for example “u8” or “s16”.

Next we have Booleans. There’s really not much to say about them other then they may hold only two possible
values – “true” (1) or “false” (0). We will mostly be using them for simple switches and there’s no point in dedicating

any more time to them. The symbol used to declare Booleans is “bool”.

Finally, we have chars… Chars will mostly be used to hold characters or numbers, but they are much more
versatile then that. By “holding anything” I really meant that you can use those variable to hold “anything”.
From text to graphics and sound, arrays of chars will be your tool of choice. The symbol to declare chars is
“char”.

Now that types have been discussed, we can move to Scopes, and we’ll discuss only two: Global and Local.
A Global Variable is declared outside the main block of the program, thus can be called anywhere within it while
a Local Variable is declared within a function, thus may only be used within that function. I’m sounding vague,
huh? Functions? Blocks? What am I talking about? Well, let’s get right onto that in the Introductory Chapter 2,
as I don’t think the “name” part needs any explanation other than “don’t use special signs or spaces when naming a
Variable”.

Chapter 2: Functions!

So, what is a Function, you ask? Well, a Function in layman’s terms is a set of instructions that the program is
supposed to carry out. How does a function look like, how do we declare it you ask? Let’s see the declaration for
ourselves:

Type Name(TypeOf Argument, TypeOf Argument2){ … };

That… looks incredibly complex, doesn’t it? Let’s cut it into pieces, shall we?

Where “Type” you put either “void” if you don’t really want the function to return any value for you, just carry out
the instructions. If you do want it to return some sort of a value or data, you can specify it using the previously
described Types – that way, you will be able to assign the value returned to a given variable! Snazzy!

The Name can be just about anything, but without spaces and really fancy special signs.

As far as Arguments are concerned, there can be as many as you like and they can be any type of a variable
you want.

How do we call our declared function? Well, we simply do this:

NameOfTheFunction(Value1, Value2);

Simple!

Just to practice, let’s build our very first simple function, shall we?

CODE

s16 Adding(s16 Number1, s16 Number2){

s16 Result=Number1+Number2;

return(Result);

}

So, what does this function do? Well, it adds the value specified as Number1 to the value specified in Number2

and returns its number as shown by Result!

So, if we do this:

CODE

s16 Number3;

Number3=Adding(2, 2);

Our function will assign the value “4” to the declared variable Number3. Neato, huh? Of course we’re not going to

build functions with *that* simple functionality but hey! We’re just starting, right?

Before we can actually create any fun functions, we’ll have to learn a bit about operators and built-in C

functions… but I’m feeling like you guys are yawning at this point – so much new-found knowledge and we

can’t use it anywhere! Annoying, isn’t it? Well…

Let’s do something else, shall we? Let’s build our very first application! Oh, the excitement! First and
foremost though, we will analyze the template we’re given from libnds so that we know where to put what, hmm?

Your minds open? You’re fingers ready? This is the part you were all looking forward to, so let’s do this!

Exercise #1 - Your first program!
Open up Visual Studio C++ Express, start a new project and select the DS as your platform of choice via the wizard –

the default settings will do. Once you’re done, you will be able to browse the contents of your Solution using the table

of contents situated on the left-hand part of the screen. Right now you only have the Source file called “template.c”.
Let’s open it! You will likely see this as the result:

CODE

 /*---

 Basic template code for starting a DS app

---*/

#include <nds.h>

#include <stdio.h>

//---

int main(void) {

//---

 consoleDemoInit();

 iprintf("Hello World!");

 while(1) {

 swiWaitForVBlank();

 }

}

Wow wow wow, that’s alot and sooo fast! Let’s look through this quickly, shall we?

Every program is essentially divided into three main sections: the Includes, the Declarations and Defines and
finally the main(); Function. We will discuss them all briefly. I will also explain the three functions that appear in this

code so that they’re crystal clear.

#include is a directive referring to any files that may be included in the project. It’s vital to know that #include files

will *always* be in our RAM – their content can be accessed anywhere throughout our program! This will turn out to

be very useful when organizing your work and resources later-on, so remember it! The two files included are nds.h,

which is the libnds library and stdio.h, which is the Standard Input/Output library of C and C++. The Angle-Brackets

<> indicate that the compiler will search for the file using it’s specified INCLUDE path as well as the parent directory

of your program, were we using simple quotation marks “”, the compiler would attempt to find it only in the parent

directory, but more on that later.

Normally after the #include we would start putting our Global declarations, every variable declared there will be

treated as Global. Keep that in mind!

This basic template has no variables, but let’s add one, just for the heck of it! Scroll up and put your declaration right

before the main(); function. Let’s say…

char MyName[25]=”Put your name here, silly!”;
Can you tell me what kind of a variable that is? Yep, you are absolutely right! Great attention span! It’s indeed a

char, its name is “MyName” and its value is… well, whatever your name is! What’s with the weird number in the

brackets, you ask? Well, one char can only hold one character – with this number, our variable is now an Array,
otherwise known as String, of the length of 25 characters – that way, we can put more characters in, but more on

that in the later chapters about Arrays. In any case, good job! Remember about the “;”, without putting it at the

end, the compiler will not know when the line of input ends and will return an error, so declare carefuly! Let’s move

on.

Lines starting with “//” or enclosed between “/*” “*/” are called Comments – the compiler ignores them, but they

are helpful to mark important parts of your code.

Finally we move on to the int main(); the most interesting part we’ll tackle today.

main(); is effectively the main function of the program – whatever is supposed to happen is placed in it. It is divided

into two main parts – the part before while(1) and after it. We’ll talk about the while loop later, for now, all we need

to know is that whatever is before while happens once, whatever comes within its brackets happens once each frame

(the DS works at circa60 frames per second, so the maths here are clear).

Before while(1) we have two functions, let’s have a closer look to know what they are:

consoleDemoInit(); is a function built-in libnds, it will launch a DOS-like command line to which you will be able to

output text. Nothing more, nothing less, really.

iprintf("Hello World!"); is a function used for printing text. It prints it directly into the console, the text printed is
placed between the quotation marks. Simple!

Let’s head to while, shall we?

It contains only one function - swiWaitForVBlank(); which, as the name implies, wait for a VBlank, meaning the

end of a frame. You will have to put this function at the end of your main, always!

So, from what we’ve read so-far, this program should:

1. Initialize the console.

2. Print Hello World! On the screen.

Let’s see if it does that, shall we? Select “Build” from the context menu at the top of the screen, then hit “Build
Solution”, alternatively just hit “F7”. This will begin the makefile operations and compile your very first .nds

file. Excited? You should be!

Once Building Operations are finished, you will be able to read where the file was saved at the bottom part of the

screen. No surprise there – it’s in the folder you specified when creating the Project.

Open that folder – the .nds file should be there. Provided you have an .nds emulator, you will be able to launch it,

and… magic! It does what it’s supposed to!

I can hear you nagging “but what about my Variable?!? I want it to do something that wasn’t in the template, you’re

a lame teacher!” and that breaks my heart. Would I desert you? Would I? Never!

Let’s spice up the code a little bit, hmm? Let’s make this program specifically about *you*.

Scroll back up where you declared your first variable and declare another one, like this:

char Text[100];

We already know it’s a string of characters with a specified length, but why No value? Well, it means that the string

is empty – we can put data into it later-on though. This is called a “buffer” – a place dedicated in RAM for us to input

data into.

Let’s move onto the function though, shall we? Before the iprintf(), we’ll add another fun function that is commonly

used with strings:

sprintf(Text, “Hello World! My name is %s!”, MyName);

Okay, confusing, I know. Explaining now. sprintf(); is a function used for formatting strings – you select

a destination buffer, then you write the format within the brackets, finally you writewhich variables should be
used to format it. In this case, we are inserting the string MyName using “%s”. The final result should be “Hello

World! My name is Whatever you specified as your name”. That’s neat, isn’t it?

Now, let’s modify the iprintf to use our text. All you need to do is this:

iprintf(Text);

Now, rather then Hello World!, the text printed will be whatever has been put in the buffer Text (hence the lack of
brackets). Now, what you should have is this:

CODE

#include <nds.h>

#include <stdio.h>

char Text[100];

char MyName[25]="Foxi4";

int main(void) {

 consoleDemoInit();

 sprintf(Text, "Hello World! My name is %s!", MyName);

 iprintf(Text);

 while(1) {

 swiWaitForVBlank();

 }

}

Ready? Steady? BUILD! So… does it work? Well, why shouldn’t it?

You’ve just built your very first program for the DS, congratulations! Admittedly it’s simple, but with some

dedication, soon enough you’ll be a pro at this! One thing is for sure, you’re no longer a Zero, you moved

onto... 0,1… So there’s still a road ahead of you!

Chapter 3: Operators in C

So far, we've learned the basic structure of an application in C, the types of Variables and looked at some functions -
I hope everything so-far sunk in because we're about to look at if statements and switches with
various conditions! Before we get there though, we need to know how to build those conditions, and for that, we'll
need to have a look at Operators.

Without further ado, let's get to it, starting from explaining what exactly they are.

Operators are very simple elements which tell the program how to combine, compare or modify Values.
By putting them in-between of two Operands we create Expressions. We can also use some of them connect
Expressions together, designing more advanced Logic.

Let's use an example that's known from our daily life and math - an expression is for example "3+4" where "+" is
the Operator. Operators are divided into 5 groups, each of them with different uses.

Those groups are Arithmetic, Comparison, Logical, Assignment and the Ternary Operator. First, we'll have a
look at Arithmetic Operators as we've already used a few. They are used exactly the same as you'd use them in
everyday math tasks, so their function should not pose any problems to anyone. Those Operators are:

ARITMETHIC OPERATORS

+ addition
- substraction (- when placed before numbers negates them)
* multiplication

/ division
(and) define precedence (to define in what order the calculations happen)

++ incrementation (adding 1)
-- decrementation (substracting 1)
>> bit shift right
<< bit shift left

% modulus (calculating the remainder of dividing two numbers)

Example of use: AVariable=3+3;
(Assign the result from adding 3 to 3 to AVariable)

As of now, only the first 5 (well, maybe 7) are of our interest, the rest will be covered in more detail in
subsequent chapters if they pop up, for now you just need to know they exist.

Next up are operators which we also used, called Assignment Operators. We use them to assign Values to a
given Variable. Those operators are:

ASSIGNMENT OPERATORS

= Simple assignment. The Value of the right operand is assigned to the Variable on the left.

*= Multiplication assignment. The Value of the left operand is multiplied by the Value of the right operand and the

result is assigned to the left one.

/= Division assignment. The Value of the left operand is divided by the Value of the right operand and the result is

assigned to the left one.

%= Remainder assignment. The remainder of dividing the Value of the left operand by the right operand is assigned

to the left operand.

+= Addition assignment. The Values of operands are added and the result is assigned to the left one.

–= Subtraction assignment. The Value of the right operand is substracted from the Value of the left operand and the

result is assigned to the left one.

<<= Left-shift assignment. The Value of the left operand is shifted left by the ammount of bits specified by the right

operand and the result is assigned to the left one.

>>= Right-shift assignment. The Value of the left operand is shifted right by the ammount of bits specified by the

right operand and the result is assigned to the left one.

&= Bitwise-AND assignment. Obtains the bitwise AND of the left and right operands and assigns the result in the left

operand.

^= Bitwise-exclusive-OR assignment. Obtains the bitwise exclusive OR of the left and right operands and assigns the

result in the left operand.

|= Bitwise-inclusive-OR assignment Obtains the bitwise inclusive OR of the left and right operands and assigns the

result in the left operand.

Example of use: AVariable=AnotherVariableOrAValue;

(Assign the value of AnotherVariableOrValue to AVariable)

Once again, I've divided them into two groups - the ones you should be concerned with firstly and the ones that we'll

be using much, much later.

Now we can move on to what interests us the most today, which would be Comparison Operators. These will be the

basis of building conditions and you need to know them by heart. Their purpose is to compare two Values and return
the result of this comparison. Those operators are:

COMPARISON OPERATORS

== Checks if the Value on the left is equal to the Value on the right.

!= Checks if the Value is not equal to the Value on the right.

< Checks if the Value on the left is smaller then the Value on the right.

> Checks if the Value on the left if greater then the Value on the right.

<= Checks if the Value on the left is smaller or equal to the Value on the right.

>= Check if the Value on the left is greater or equal to the Value on the right.

Example of use: if(Variable<3) Variable++;

(if the Variable's value is less then three, increment it)

ALL Comparison Operators are essential; there is literally nothing we could leave for later.

Finally we can move on to another useful kind of Operators which we will frequently use to join together different

expressions. Those operators are called Logical Operators and are relatively simple to remember since there are

only three of them.

LOGICAL OPERATORS

! Is used to negate a given expression, this operator is called NOT.

&& If both parts of the expression are true, the whole expression is true. If either part if false, the expression will be

false. This operator is called AND.

|| If either part of the expression is true, the whole expression is true. This operator is called OR.

Example of use: if(AVariable==3 && AnotherVariable==3) AVariable++;

(if both variables are equal 3, increment the first one)

That'd be all we need to know now - the Ternary Operator will be introduced together with if statements. That's all
for this chapter and tune in next time to learn how to build Conditions with our new-found knowledge, alongside some

fun examples!

Chapter 4: Conditions

Now that we know Operators, we are pretty much set to start learning about creating various Conditions in C.
What is a Condition? Well, it is a Statement that specifies how our program is going to react when a given
event happens. We can divide those statements into two basic groups, if Statements and switches. Firstly we'll
have a look at both, then we're going to compare them as to know exactly when to use them efficiently.

We've actually seen a few if statements already in the previous Chapter, I'm sure you've noticed! These were
however very short - they were the shortest possible form of that kind:

if (Condition) Result;

With that kind of a statement we can only specify one Result and one Condition, so naturally this is a really
limited statement. To fully utilize if Statements we need to be familiar with their entire structure, which is as

follows:

CODE

if (Condition){

 Statements;

 }

else if(Condition2){

 Statements;

 }

else{

 Statements;

 }

We can see that this is a much more flexible implementation of an if Statement, we can not only specify as

many Conditions and Results as we want using else if's, we can also set a Resultthat will occour if neither of the
Conditions are met! It is divided into three parts, our first if, a number of following else if's and finishes
with else - the latter two parts are entirely optionaland you can ommit either of them if you don't need them.

To show how this works in a more practical way, let's have a look at this example:

CODE

if (Age>=18){

 iprintf("You're an adult!");

 }

else if(Age<18 && Age>=0){

 iprintf("You're a minor!");

 }

else{

 iprintf("Very funny. You were supposed to input your age!");

 }

Here, if the Variable Age's Value is greater or equal to 18, the program will inform the user that he is an adult by
printing a message on the screen. If the Value is less then 18, but more then 0, the program will state that the user
is a minor. If the Variable has a value that is incorrect, such as less then 0, the program snarkly remarks that the

user inputted an incorrect value.

Of course we could just do this:

CODE

if (Age>=18){

 iprintf("You're an adult!");

 }

else{

 iprintf("You're a minor!");

 }

But this presents a degree of ambiguity - if the user would input a value that is less then 0, the program
would still refer to him as a minor despite the fact that the value is incorrect. This could be prevented by doing
this:

CODE

if (Age>=18){

 iprintf("You're an adult!");

 }

else if(Age<18 && Age>0){

 iprintf("You're a minor!");

 }

However again, the program would be confused if the inputted value was of incorrect type, for example a character
rather then a digit and this would result in a glitch - the character would be transcribed into a numerical value.

Why am I saying all this? You're going to say "we're not brain-dead, this is obvious!". Well, let me tell you, it's
not. I'm doing this to teach you to avoid being ambiguous at all costs, this will save you time

when debugging your applications.

Keeping these issues in mind will help you avoid glitches in your program and prevent it from acting in a manner
that you would not expect. Computers are not intelligent, they will not do your work for you.

You have to imagine you're giving orders to a complete simpleton who requires really specific instructions as
to not make a mistake.

Simplify your code when it is possible, by all means, but where there is room for error, specify your
intentions in detail.

To conclude the section about if Statements, we'll have a look at the Ternary Operator as promised last time.

Sometimes our conditions can be thoroughly simplified and we can ommit the use of if
Statements or switches altogether by using the Ternary Operator "?".

Let's consider this snippet of code:

CODE

if (Variable==10){

 Result = 1;

}

else{

 Result = 0;

}

We created an if Statement which checks whether the Variable is equal to 10. If it is, the program will assign the

value 1 (true) to Result, otherwise it will assign 0 (false). We can simplify this with a simple Ternary Operation,
like this:

CODE

Result = Variable==10 ? 1 : 0;

This will automatically assign the values to Result depending on whether the Condition will turn out to
be true or false! Much quicker, isn't it?

Now that we are accustomed with if Statements, we can learn about switches, which are very similar in function

however may come in handy simply because they are more see-through andeasier to debug. Let's have a look,
shall we?

CODE

switch(Variable){

 case 1:

 Statements;

 break;

 case 2:

 Statements;

 break;

 default:

 Statements;

 break;

}

In this example switch, we have two cases and the default case.
If the Value of Variable is equal to 1, it performs the Statements specified in case 1, if it is equal to 2, it
performs the Statements specified in case 2, if it is neither, it performs the Statements specified in the default
case, which is optional. Each case is separated by break; as to conclude the case, however it is optional if you
want to receive the same result in several cases, like here:

CODE

switch(Variable){

 case 0:

 iprintf("Variable is equal to 0");

 break;

 case 1:

 case 2:

 iprintf("Variable is equal to either 1 or 2");

 break;

 default:

 iprintf("Variable is neither 0 nor 1 or 2");

 break;

}

By not adding the break; after case 0, we specified the same Statement for both case 1 and case 2, thus saving
time and simplifying the switch.

The default; case again is optional, however I'm reminding you about possible ambiguity of code. This is
a disadvantage of using switches - if the Variable will not fall in either case specified and there will be no
default case present, the program will simply ignore the input altogether! Another disadvantage of switches is
that the Variable used must be a simple Variable - either an Integer or a char, thus we cannot use it with
Strings or Structures.

This concludes Introductory Chapter 4, in the next and final introductory chapter we will have a look at Loops,
specifically for Loops and while Loops. The rest of C-related material will be discussed as we progress if needs-
be. Thank you for reading and see you next time!

Chapter 5: Loops

Today we'll be having a look at Loops, to be more specific, the for() and while(). In programming, we use Loops to
create cyclical action - we put functions we want to use repeatedly in them to save time. As always, we'll have a
look at both and compare their features to know when to use each of them. Let's start with the for() loop and its
syntax, shall we?

for(Starting Expression; Testing Expression; Count
Expression){...}

Starting? Testing? Counting? What's all that? Well, let's have a look at a more practical example:

CODE

u8 i=0;

for(i=0;i<5;i++){

iprintf("This is a line of text.\n");

}

As we can see, we created a Variable to be used in the Loop called i, this Variable is incremented once each cycle
as long as the Testing expression is true, which here means as long as it is less than 5. Until it reaches this state
though, every Statement between the { } brackets will be executed once each cycle aswell! Thus, the end effect
is:

CODE

This is a line of text.

This is a line of text.

This is a line of text.

This is a line of text.

This is a line of text.

You're going to ask "where's the weird "\n" you've ended the String with, huh? Well, this is the Newline Sign! Using
it you can make sure that whatever new string you'll be inputting into the console will be printed in the next line!
Let's compare this for() to a loop we already know, the while() Loop.

while(Condition){...}

Looks a whole lot more simple, huh? Well, it also works slightly differently. As you can see, there is no place to put
in the Start Condition, nor do we have a place where we could add or substract from our controlling Variable...
How do we use it then?

The while Loop will execute the actions nested between its { } brackets as long as the Condition specified is true.
For example...

CODE

u8 i=0;

while(i!=5){

iprintf("This is a line of text.\n");

i++;

}

The idea here is clear - we have our Variable i which we use as a controller. The Loop prints text into the console
with each cycle and then increments the Variable i. After 5 cycles, i reaches 5 and the Looped functions are no
longer executed... Yes, you guessed it! The result is:

CODE

This is a line of text.

This is a line of text.

This is a line of text.

This is a line of text.

This is a line of text.

As you've seen, we can in fact utilize both Loops to do the exact same thing, but you will also notice that the for()
Loop is very much independent - it sets the value for i itself and it also sets how this value will change each cycle.

With while(), you have to plot the activation and deactivation of the Loop yourself.

Both cases have their advantages and disadvantages so all I'm really going to say is that we will
use for() Loops whenever we want a certain function to be repeated a specified number of times and leave
the while() Loop for functions that only need to be executed repeatedly when a given event occurs, for example

when constructing A.I's, but more on that in the Chapter about game logic later on.

I hope you enjoyed this chapter, even if it's a little bit short. There really isn't much to say about Loop, so bare with

me. I'd also like to inform that there's been a slight change in the schedule - we'll jam a chapter
about Arrays and Structures before we proceed to strictly DS-specific programming as I don't want to run into

unintroduced concepts while we're at it. I'll do my best to introduce both briefly and clearly. Stay tuned and
thanks again for reading, see you next time!

Chapter 6. Containers of Variables - Structures and Arrays

Structures and Arrays are nifty containers which will greatly improve our overall work. Rather then working on
one Variable at a time, we can construct Arrays and Structures to work on multiple Variables at the same time.
We've already seen a few Arrays, but we never really discussed how they work so we'll start with them.

In essence, an Array is a uniform set of numerous Variables of the same Type placed next to each other that
can be referred to using the same name�

We already know how to declare an Array from the previous chapters:

Type ArrayName[NumberOfUnits];

But this is only one of possibilities. An Array declared in this fashion will have no values assigned; just empty
slots ready to receive them. You can just as well do this:

Type ArrayName[]=^1,2,3`;

Here, we are not assigning a "total size" at all - the compiler deduces on its own that initially the Array has 4 slots -
for the 1, 2, 3 and the NULL - there are no empty slots.

What's interesting is that you don
t have to use all the values in an Array immediately� You may assign values
to it later until you reach its maximum Size. For example, you may declare your Array as one with 255 slots while in
reality you will be using less then that and add values further as the program progresses:

Type ArrayName[255] = {1,2,3};

Here, we assign values - 1, 2 and 3 to corresponding slots 0, 1 and 2, however, the number of slots is higher than
that, thus the rest is left empty and a NULL is appended to them. Keep in mind though that going past the
specified Size of the Array will result in assigning out-of-bounds values! You don
t want that to happen!

All that said... why are Arrays useful? After all, we could just as well declare the exact number of Variables we
need, surely declaring them in an Array has some advantages? Well, sometimes you may hold numerous values
that refer to pretty much the same thing - having the capability to call them by the same Name is pretty useful.
Earlier we saw Arrays of char's - the Array was a collection of signs that were later called as a whole String.
Another use for Arrays is that their Values can easily be changed using Looping, like this:

CODE

for(i=0; i=5; i++){

MyArray[i]++;

}

With only a few lines of code we
ve incremented 6 Variables - MyArray>0@ up to MyArray>5@. Normally it would
take us 6 lines of code, here we're just looping through an Array and calling its elements using the Variable i.

This shows us how to call specific units within the Array - all you have to do to call up a given element is
putting the appropriate number corresponding to the unit into the brackets >@. As you can see, an Array can
be called as a whole as previously shown, but at the same time you are not losing the capability to call its
specific elements like you would normally call Variables, which is a big plus.

Arrays have another interesting feature. What we declared was a single-dimensional Array - a single row of
Variables. We are not limited to this though - you can declare multi-dimensional Arrays easily:

MyArray[Rows][Columns];
This is for example a two-dimensional Array. Try to imagine how the Variables are situated in it. Why of course,

on a two-dimensional grid. This kind of an Array could be used for example to track two values referring to the
same object - for example the height and width of a sprite or its position on the screen.

I won't dwell into the details here - the possibilities in design are endless. What I will mention is the limitation
of Arrays.

As I previously said, every element of an Array is of the exact same type. This can be quite a hindrance as even
though Arrays are really versatile for holding data, all the data within them has to follow its strict Type rules. What
can we do when we require a specific variable that will hold data of two or more types? Why, we create a
Structure!

There are numerous ways to create a Structure, but I will only cover my favourite and most see-through method -
creating a new type. It is only logical that once no available Type can suit your needs, you create a new one,
isn
't it?"How do we declare a new type?"Quite easily, really:

CODE

typedef struct{

type1 Element1;

type2 Element2;

type3 Element3;

} NameOfType;

As you can see, the syntax is quite clear - we create a definition of a type, and it is going to be a structure.
The structure type in this template has three elements and its name is NameOfType... but this alone is just a type,
how do we declare this structure? Easier than you think:

NameOfType MyStructure;

Yep - you use your newly-defined Type as you would with any other. How do you call the elements" Also rather
easily - you call them using the name of the new Structure and the name of its element, here it would be for
example:

MyStruct�Element1, MyStruct�Element2 or MyStruct�Element3

By using a Structure, you free yourself from the limitation of the Array - you can now use any type for
any element freely. Unfortunately, you also lose some of the privileges.

You cannot for example freely cycle through elements with a Loop as shown earlier as they are not numbered -

they have separate names.

We'll end our adventure with C here for now... why?

Because what
s coming up is libnds Input! I honestly believe that the information we've discussed allows us to

jump into DS Programming head first without worrying of getting lost in it. The C introduction will still be expanded as

we tackle new subjects, but our knowledge is sufficient for now. Can't wait? Me neither! Stay tuned and remember -

do comment! Foxi over and out!

Practical use of libnds
Chapter 1� Input – .Keys and Stylus

With the basic introduction of C behind us, I believe we're ready for what you've all been waiting for – the basics
of libnds.

Until now, even with everything we've learned so-far, we were unable to utilize any user input whatsoever, as we
didn't know how to use the Keys or the Touchscreen – these are platform-specific after all. Today we're going
to learn how to detect the state of Keys and the Touchscreen and how to use it�

Let's start with Keys. First and foremost, to use Key Input, we need to scan for their use. To do that, we place

the function:

scanKeys();

Within the main while(); loop of the program. This will initialize the Key scanner and thus allow us to use
them as a method of input.

Their use is divided into two portions – Key Detection and State Detection. These are of equal importance –
one cannot work without the other, so keep that in mind!

Keys are neatly put into an easy-to-remember structure of Enumerators. We're not going to tackle what
exactly Enumerators are; all you need to know that each Key corresponds to a value, the Lid and
Touchscreen taps are also treated as a Key. This is the list of all Keys you can use:

CODE

 KEY_A = BIT(0)

 KEY_B = BIT(1)

 KEY_SELECT = BIT(2)

 KEY_START = BIT(3)

 KEY_RIGHT = BIT(4)

 KEY_LEFT = BIT(5)

 KEY_UP = BIT(6)

 KEY_DOWN = BIT(7)

 KEY_R = BIT(8)

 KEY_L = BIT(9)

 KEY_X = BIT(10)

 KEY_Y = BIT(11)

 KEY_TOUCH = BIT(12) (Refers to touchscreen tapping)

 KEY_LID = BIT(13)

As you can see, each Key has its respective Name. Using those we can create Statements that will depend on

their values, but not just them alone. We will also require their State, and for that we have a set of useful

functions:

CODE

keysDown();

keysHeld();

keysUp();

keysCurrent();

Down, Held and Up are relatively self-explanatory – Down is the State occurring directly after a button is
pressed, Held is a State that occurs when the key is pressed and kept down and Up is a State that occurs when
the key is released. All three return different values when different keys enter the specified state. Current is an
interesting State, as rather then Returning a value to a specific State immediately, it first detects which
state it is.

Now that we know that, we're able to compose our first condition based on Key input!

if(KEY_A & keysHeld()){
Statements;

}

This if statement is quite clear – if the A button is held down, the Statements within the { } will be executed.
The Statements will be executed until the State of the Key changes, in this case, when it is released. You can do
the exact same thing with any combination of button + state. To make it easier and more sensible, it's worth to

declare some special Variables before you begin your program

CODE

u16 Pressed;

u16 Held;

u16 Released;

...and update them at the beginning of every while(1); cycle.

CODE

Pressed = keysDown();

Held = keysHeld();

Released = keysUp();

This way we save valuable calculation power by checking the States of buttons once each frame at the beginning of
the program rather then with each button press.

if(KEY_A & Held){
Statements;

}

Now that we've covered Keys we can safely progress to the Touchscreen which is also quite simple to use. We'll
start by declaring a Variable to hold all the data recovered from the screen:

touchPosition TouchStructure;

We are yet unfamiliar with the type touchPosition - it's a type declared within libnds and platform-specific. It's a
Structure type and holds the data on numerous stylus readings:

CODE

u16 px (Pixel X value)

u16 py (Pixel Y value)

u16 rawx (Raw X value)

u16 rawy (Raw Y value)

u16 z1 (Raw cross panel resistance)

u16 z2 (Raw cross panel resistance)

rawx and rawy are exactly what their names imply - raw values read from the screen. What makes them raw? Well,

they're not exactly user-friendly as they are not translated to pixel positions on the screen, they're large and
require further calculations to be used in pointing and clicking, however they are read much quicker then other
values, thus are useful at for example implementing swiping and dragging with the stylus. px and py values are
calculated from raw values and refer to specific pixels on the screen. The screen is 192 pixels high and256 pixels
wide, with the top left-hand corner marked as pixel 0,0 - knowing this alone will help you use the px and py values
successfully. As for z1 and z2 values, they refer to the panel resistance and are useful (from what I know) at reading
the pressure, however it's not something you'd normally use and thus we won't talk much about them.

You can use any name you feel comfortable with in this declaration rather then "TouchStructure", it doesn't in any
way influence the readouts... which we're not getting yet anyways.

To receive readouts of the stylus position, we need to initialize a screen scan function at the beginning of our main
while() loop as we did with the keys. In case of the touchscreen, we use:

touchRead(&TouchStructure);

Sigh, I know what you're going to ask, oh-ever-so-inquisitive reader. "What's that & doing there? That shouldn't
be there, right?". Well, yeah, it should. This "&" refers to a Pointer, you don't know what those are yet and for

now you don't need to. What I will tell you though is that to save space and calculation power, rather then using the

whole structure inside this function, we just Point at the location of the structure in memory with a Pointer.

After using this function, all the readouts from the touchscreen will be immediately sent to

the TouchVariable structure, out of which we'll be able to draw elements as we normally would with a Structure, as

we already know its elements. For example, the position of the Stylus Horizontal-wise and pixel-wise will be kept

under TouchVariable�px.

This concludes this Chapter, I hope it was a pleasant read. I'll do my best to include a nice exercise

concerning Key and Touchscreen use soon, for now, experiment on your own and if you have any questions or if

you'd like to boast a bit with your newly-written code, go ahead and post! It'll only get better from now on!

Foxi over and out!

To re-cap, so-far we’ve learned everything we need to create conditions in our programs and to use both the buttons
and the touchscreen as means of input. That’s all great, but other than console text, we still don’t know how to
include graphics in our projects!

The next few chapters will be dedicated to both the basic theory behind graphics on the DS and practical use of
NightFoxLib, which will be our library of choice to facilitate the use of backgrounds and sprites. Before we get there
though, we need to learn a little bit about the DS itself once more – to be exact, we have to review how exactly the
memory of the DS works and how to use it properly. Without further ado, let us dig in to our next chapter, dedicated
to RAM, VRAM and Screen Layers.

Introduction to DS Hardware:
Chapter 1 – RAM and VRAM

Before we properly dive into the use of graphics and various other resources, first we need to learn a bit about how
the DS manages memory. As you may or may not know, the DS has 4MB of Main RAM memory, shared between
its two processors – the ARM9 and the ARM7. Main RAM is where your entire Binary will be stored during its
execution and naturally it has to be used efficiently, as it isn’t a whole lot of space. For a long time, it was a huge
bottleneck for homebrew programmers, but then came libraries such as FATlib, NitroFS and other file systems that
facilitated streaming resources into RAM, nullifying this problem by the use of buffering. We won’t tackle that just
yet, seeing that conveniently, NightFoxLib does it for us automatically, however we will talk about their use later-on
when introducing Saving and Loading. Let’s move on to the next important part of the DS’s memory – the VRAM.

The fact that your resources are stored in RAM isn’t always enough to utilize them. Graphics have to fit within
Video RAM before they are displayed. The size of VRAM is only 656KiB altogether, which is quite a bottleneck,
considering the way it is structured. The memory is divided into several banks, all of which have different functions
assigned to them. Let’s have a look at this diagram:

This should help you imagine how the system works. Again, conveniently, NightFoxLib will deal with the VRAM
banks for us, but I figured that it’s best if you have a look at it to understand why sometimes you run out of VRAM
blocks when using graphics.

To combat this inheritent problem of lack of space, Tiled graphics have been introduced back in the olden days.
They take much less space than standard backgrounds, and these will be the first for us to tackle – specifically, tiled

backgrounds converted with the GRIT (GBA Raster Image Transmogrifier) tool.

I specifically picked NightFox Lib as the library of choice for this guide, simply because its use is incredibly simple
and because the library is still in active developed, not to mention that it's well-documented. I believe that we will all
get the quickest and best results if we focus on it as our graphics library, so let's get to it.

Practical Use of NightFox Lib
Chapter 1 – NightFox Lib Integration Part 1

Integrating the library with your Projects is incredibly easy – all you really have to do is copy/paste
the Template provided in the lib’s folder into Your project… and that’s it! There are further integration options that
you may choose that will be discussed in the second part of this chapter. As you’ve already noticed, a few new folder
have appeared in your Project Folder – those will be used to store various Resources. Visual Studio is capable
of linking those folders to particular elements of your Solutions. By doing that, you will always see the contents of
your folders which will make coding this one bit easier. Including those folders in your solution is pretty straight-
forward, but we’ll leave that for later as I already know you all can’t possibly wait any longer to get to the juicy parts.

For now, attempt to compile the Template. If everything goes well and without hiccups, you’ve just successfully
included NightFox Lib in your Project – well done!

Additional Utilities - Chapter 1 - GRIT

Now that we’ve included NightFox Lib in our project and we’re all acustomed with how RAM and VRAM works, we can
finally move on to what we’re really interested in – using Graphics in our games and applications. As I already
mentioned, the DS mostly uses Tiled Graphics – they’re much easier to render and their size is lower, thus they
don’t clutter the RAM and VRAM as much. To convert an image to that kind of a format, we will be using GRIT. The
name stands for GBA RASTER IMAGE TRANSMOGRIFIER and it has been the tool of choice for both GBA and NDS

development due to the variety of functions it offers. It’s been created and maintained by Jasper Vijn and it’s
available at http://www.coranac.com/projects/grit/ however you already have it as it’s the default tool used by
NightFox Lib – you can find it in the Tools directory at nflib/tools.

There, you will find several Batch files that we will be using to convert our Bitmaps with. Those include:

Convert_Affine - this Batch file will convert all the graphics in the BMP folder into Tiled Affine Backgrounds
and copy them into the affine folder.
Convert_Backgrounds - this Batch file will convert all the graphics in the BMP folder into Tiled Backgrounds
and copy them into the backgrounds folder.
Convert_bitmap8 - this Batch file will convert all the graphics in the BMP folder into 8-bit Bitmaps and copy

them into the bitmap8 folder.
Convert_bitmap8_shared - this Batch file will convert all the graphics in the BMP folder into 8-bit Bitmaps
with a shared palette and copy them into the bitmap8 folder.
Convert_bitmap16 - this Batch file will convert all the graphics in the BMP folder into 16-bit Bitmaps and
copy them into the bitmap16 folder.
Convert_CMaps - this Batch file will convert all the graphics in the BMP folder into Collision Maps and copy
them into the cmaps folder.
Convert_Fonts - this Batch file will convert fonts and copy them to the fonts folder.

Convert_Sprites - this Batch file will convert all the graphics in the BMP folder into DS-Compatible Sprites
and copy them into the sprites folder.
Convert_Sprites_autopal - this Batch file will convert all the graphics in the BMP folder into DS-Compatible
Sprites with a shared palette and copy them into the sprites folder.

As you can see, with NightFox Lib’s pre-prepared Batch converter files, converting resources will be a breeze!
Remember, by default, all Tiled Graphics have a transparent colour selected, and this colour is Magenta (RGB
255,0,255) – use it whenever you want parts of your graphics to be transparent as it will not appear on the
hardware.
Another thing worth noting is that our Backgrounds must have sizes divisible by 256 pixels and our 2D Sprites
must have sizes divisible by 8 pixels, 64 pixels being the maximum width/heigh, so keep that in mind
before

converting to avoid errors.

Chapter 2 – NightFox Lib 2D MODE-0 Part 1 - Tiled Backgrounds

I didn’t quite know how to start off the subject of Graphics in NightFox Lib to make it approachable to anyone, so I
figured that the best way to do so would be to do it methodically. In the following few chapters I’m going to introduce
the idea behind MODE’s that the DS’s 2D Engine uses, what they do and how to take the best advantage of them.
We’re going to start with MODE 0 and climb upwards until we’ve discussed them all. Just so that nobody’s bored
during these chapters, I’m also going to introduce the types of graphics most commonly used in the MODE in
question, so that we get a little bit of practical and theoretical knowledge. This chapter will be dedicated to MODE
0 of the 2D engine in NightFox. This mode offers 4 layers of Tiled Graphics on the screen in question, and it’s
likely going to be the MODE you use most commonly. To initialize a MODE, we use the command:

NF_Set2D(Screen, MODE);
Simply substitute Screen with use 0 or 1 to select the Top or Bottom one, and substitute MODE with 0, 2 or 5 – the
default MODE’s of NightFox Lib.

Now, before we do anything else, we have to define the default Folder for our Resources, using this function:

NF_SetRootFolder("ROOT");
Now, to use the Internal filesystem, we substitute the ROOT with NITROFS, in all other cases, we simply input the

folder name and the function will enable FAT instead.

With that out of the way, we can start having fun with Tiled Graphics in our projects. We’ll start with Backgrounds.
Before we can use any, we have to initialize the buffers for backgrounds, as NightFox streams them from NitroFS or
FAT by default. To do so, we use these functions:

NF_InitTiledBgBuffers();
NF_InitTiledBgSys(Screen);

And again, we substitute the word Screen with the screen we are interested in – 0 or 1.
With that out of the way, we’re ready to select a background to load into VRAM. Our backgrounds have to be placed
in the “nitrofiles” folder of our project, once they’re there, we can use this function:

NF_LoadTiledBg("Path", "Name", Width, Height);
It will open the background in question, load it into RAM, attach a name to it and store the parameters of
its Width and Height (divisible by 256!) so that we don’t have to remember them later on as we code. It’s pretty
convenient, but our Tiled Background is not ready to be displayed yet. As we learned from the previous chapter

about RAM and VRAM, we still have to copy it over to VRAM to display it. To do so, we simply use this command:

NF_CreateTiledBg(Screen, Layer, "Name");
As you can see, NightFox will deal with RAM-VRAM communications for us and all we really have to do is to select
the Screen and Layer on which we’d like to display out background. We won’t tackle the idea of Layers for now
beyond the fact that there are 4 Layers on each Screen, numbered from 0 to 3, 0 being the top-most and 3 being
the bottom-most Layer.

Okay, so we have our Background ready to be displayed – it’s going to appear on our screen right after the
next swiWaitForVBlank(); - perfect!

Just to make sure, let's review our sample code, shall we?

CODE

/*

##DS Programming Guide - From Zero To Hero!##

####Example #2 - MODE 0 Tiled Backgrounds####

*/

/*

############

##Includes##

############

*/

// Include C

#include <stdio.h>

// Include Libnds

#include <nds.h>

// Include NFLib

#include <nf_lib.h>

/*

###############

##Main(){...}##

###############

*/

int main(int argc, char **argv) {

// Turn on MODE 0 on the Top Screen

NF_Set2D(0, 0);

// Set the Root Folder

NF_SetRootFolder("NITROFS");

// Initialize the Tiled Backgrounds System on the Top Screen

NF_InitTiledBgBuffers();

NF_InitTiledBgSys(0);

// Load the Tiled Background

NF_LoadTiledBg("Background", "Background", 256, 256);

NF_CreateTiledBg(0, 3, "Background");

while(1){

swiWaitForVBlank();

}

return 0;

}

Let's compile this... and... SUCCESS! We've just learned how to create, load and display Tiled Backgrounds! Just to
make sure that everything is understandable, I'll attach the Example compile folder so that everyone can review the

source: http://www.mediafire.com/?lg6tvxd78gw3kly

Introduction to DS Hardware:
Chapter 2 – OAM and 2D Sprites

Before we jump head-first into using Sprites, it’s worth to know a little bit about how the Sprite system works on the
DS. The name OAM stands for Object Attribute Memory – it’s a dedicated space in memory that the DS uses to
track and control all Sprites (their current Frame or all of the Frames, depending on the code used) and their
Attributes (Mosaic, Rotation, Double Size etc.). All in all, we have space for up to 128 individual Sprite data per
screen, 32 of which can be freely rotated using the built-in rotation and scaling engine. The Sprite’s Graphics Data
(GFX) is stored in VRAM Banks, the Sprite sheets are cut up into 8 by 8 squares, meaning tiles, similarily to the
previously discussed Backgrounds. Each engine (Main and Sub, Main for the Top Screen, Sub for the Bottom
one) can support up to 1024 tiles at a time. Sprites can use 16 or 256 colours palettes - do note that all sprites
use the same tile data, however each individual Sprite may technically use a different palette, so Sprites created
from the same tiles may have entirely different colour schemes to save space rather than add additional tiles. OAM
has to be refreshed each frame so that all the on-screen Sprites (their frame, position etc.) are displayed properly.
Note the word “individual” – you can in fact display more than 128 Sprites at a time! What’s meant by that is that
within memory, you can store 128 *different* Sprites using different attributes – you can re-use the same Sprite
as many times as your own code or the library used allows you to. In case of NightFox Lib which we’re using, it’s
256 Sprites per Screen.

Much like in the case of backgrounds, we will be using GRIT to convert our Sprites. Sprites are a composition of
frames of pre-defined size and shape on one Sprite Sheet – the shapes allowed are Square (width is the same as
height), Wide (width is larger than height) and Tall (height is larger than width), while the sizes allowed are 8x8,
16x16, 32x32, 64x64, 16x8, 32x8, 32x16, 64x32, 8x16, 8x32, 16x32, 32x64 pixels. As you probably
already noticed, those sizes are all divisible by 8. The way tiles are cut up is pretty simple – as with backgrounds,
starting from the upper left-hand corner, 8x8 pixel big parts of the original image are converted into tiles, the
conversion takes place to the right from that point, and once it reaches the edge of the image, it goes a row lower
until the entire image is converted. Knowing that, you can deduce that the easiest image to convert would be a Strip
with the width of the original frame.

Once we have our Sprite Strip created, just like with Tiled Backgrounds, we put it in GRIT’s bmp folder. Once our
Sprite or Sprites are in it, we run the Convert_Sprites batch file, and after the process is complete, the resulting
binary files representing the Tiles and the Palette data can be recovered from the sprites folder. Alternatively, you
can convert Sprites using Joint Palettes – this way, you can use several Sprites using just one Palette. Keep in
mind though that it limits the total number of colours you can use to 256 rather than 256 per Sprite, however when
using a large number of them, you may end up having to resort to that.

You probably already noticed that the Sprites do not have a Map file – this is because the hardware itself
calculates which Tiles are supposed to be used at any given time, copies them into VRAM if needed and OAM
updates the displayed image. With the size and shape parameters pre-set, it can do it with relative ease, hence a
Map is not necessary at all.
Certain limitations mentioned above, such as the size of Sprites can be overcome by using the 3D hardware of the
DS, we’ll eventually get there, but for now we’re going to focus on using the 2D hardware.

Practical Use of NightFox Lib
Chapter 3 – NightFox Lib 2D MODE-0 Part 2 - Tiled Sprites

Now that we have some basic knowledge about how Sprites work in general, we can have a look at how the system
works in NightFox Lib. By the end of this Tutorial, we will modify the previously written code to include a Sprite. First
and foremost, we place our GRIT-converted Sprite in the “nitrofiles” folder. From here, we can move on to the
coding. Seeing that in NightFox, Sprites are loaded from NitroFS, just like with Backgrounds, we start by Initializing
the Buffers used by the library.

NF_InitSpriteBuffers();
NF_InitSpriteSys(Screen);

These two are pretty self-explainatory – the first function Initializes the Buffers, the second Initializes the system
that controls them for the Screen of your choice – 0 for Top Screen, 1 for the Bottom one.

NF_LoadSpriteGfx("Sprite", RAM_Slot, Width, Height);
NF_LoadSpritePal("Sprite", RAM_Slot);

These two functions load the Gfx data and the Palette of our Sprite into a selected Slot in RAM memory. We
have 256 (0-255) Slots for Sprites and 64 (0-63) for Palettes. We’re not ready to display it though – as we
learned earlier, our resources have to be in VRAM to be displayed. To transfer them there, we will use these
functions:

NF_VramSpriteGfx(Screen, RAM_Slot, VRAM_Slot, Transfer_Flag);
NF_VramSpritePal(Screen, RAM_Slot, VRAM_Slot);

The Screen is self-explainatory and we already know of the RAM Slots used in NFLib, but we need to discuss the
VRAM Slots and the Transfer Flag. As we already know, we can simultainously have up to 128 (0-127)
Sprites in VRAM – that’s the value we are looking for then. As for Palettes, we can use one of 16 (0-15) Palette
Slots for the Sprite to use. “Wait!” – you’re going to say, “You said each Sprite can use a dedicated Palette!” –
that still applies, however one has to keep in mind that Palettes take space in their Bank – you can’t use more
simply because you’d run out of space – this is why I mentioned that it’s often useful to use Joint Palettes for
sprites with similar colour schemes. Finally, we have the Transfer_Flag – as I said, you can either transfer one
Frame at a time, or you can transfer all frames into VRAM at once (the arguments are true and false
depending on whether we want to transfer all the frames or not). Both options have their pro’s and con’s – using
just one Frame at a time conserves more space, however this makes our Gfx Individual. If you re-use the
same Gfx, all the Sprites using that Gfx will animate to the Frame currently in VRAM. If you copy all the
frames into VRAM, each Sprite using that Gfx will be able to animate separately, meaning that the Gfx
can be Shared. When to use which then, you ask? Well, it’s really up to you, and it’s highly-dependant on the
design of your game. The general rule should be that if a given Sprite has more than one frame and the number
of its occurances on-screen is higher than the number of its Frames, one should transfer all of the Frames to
VRAM. It’s relatively easy to calculate why – say, you have a Sprite that has 15 Frames and it occurs on-screen
50 times. If each of these 50 instances were to be Individual, you’d use up 50 Slots in VRAM. If you transfer the
entirety of Gfx data at once, regardless of whether you use it 5 or 250 times, it will use up the same amount of
VRAM. On the other hand though, if you have a Sprite that has 100 Frames and it occurs 10 times on-screen,
there’s no good reason as to why you’d transfer all 100 Frames – you can just as well create 10 Individual Gfx for
them and use less Memory all-in-all. Always have memory in-mind – you have 128kb of VRAM for your Sprites
per screen – use it wisely and strive towards conserving it.
Now that our data is in VRAM, we’re ready to display it properly.

NF_CreateSprite(Screen, ID, VRAM_Gfx_Slot, VRAM_Palette_Slot, X, Y);

By now, all of those Arguments should be clear to us. This function will spawn our Sprite at the position indicated
by X and Y.

This concludes the basic tutorial – now, it’s time for some practice. Let’s have a look at some code.

Exercise #3 - MODE-0 2D Sprites

Let's observe our Sample Code:

CODE
 /*
###
##DS Programming Guide - From Zero To Hero!##
####Example #3 - MODE 0 Tiled Sprites ####
###
*/

/*
############
##Includes##
############
*/

// Include C
#include <stdio.h>

// Include Libnds
#include <nds.h>

// Include NFLib
#include <nf_lib.h>

/*
###############
##Main(){...}##
###############
*/

int main(int argc, char **argv) {

// Turn on MODE 0 on the Top Screen
NF_Set2D(0, 0);

// Set the Root Folder
NF_SetRootFolder("NITROFS");

// Initialize the Tiled Backgrounds System on the Top Screen
NF_InitTiledBgBuffers();
NF_InitTiledBgSys(0);

// Initialize the Tiled Sprites System on the Bottom Screen
NF_InitSpriteBuffers();
NF_InitSpriteSys(0);

// Load and Create the Tiled Background
NF_LoadTiledBg("Background", "Background", 256, 256);
NF_CreateTiledBg(0, 3, "Background");

// Load our Tiled Sprite
NF_LoadSpriteGfx("Sprite", 0, 64, 64);// Tempy!
NF_LoadSpritePal("Sprite", 0);

// Transfer our sprite to VRAM
NF_VramSpriteGfx(0, 0, 0, false);
NF_VramSpritePal(0, 0, 0);

// Create the Sprite!
NF_CreateSprite(0, 0, 0, 0, 0, 0);

while(1){
swiWaitForVBlank();
}
return 0;
}

We compile the code and… the Sprite didn’t spawn! Why…? What have we forgotten? Let’s come back to OAM. To
properly display our Sprites, we need to refresh its state. To do so, we will have to update our OAM contents
in-between of our VBlanks:

CODE

//Update NF OAM Settings
NF_SpriteOamSet(0);
swiWaitForVBlank();
//Update OAM!
oamUpdate(&oamMain);

With these lines altered at the end of our applications, it should start displaying our Sprites properly!

EDIT: I've been informed (on good authority) that libnds has been modified to include 16 Ext.Palettes for
backgrounds stock, which didn't use to be the case and I did not know that at the time of writing this guide. It
used to be handled by means of setting the start adress of the Palette, now it's done by stating the Slot number.
With that in mind, the sentence stating that this is a NightFox Lib limitation has been removed.

Excercises: Our very first game - Tic Tac Toe

Even with our very limited knowledge of programming, we're already capable of coding our very first game! I
specifically chose Tic Tac Toe because the logic rules for this game are incredibly simple. Keep in mind that the
code was created with the intention of being as straight-forward as possible - it may not be up to all "coding
standards" for the sake of simplicity. ;)

In our game, we'll use these base resources:

When starting to code a game, one has to think about what rules will govern it. Our example concerns Tic Tac
Toe, so let's list the rules:

1. There are 2 players and 9 spaces for either crosses or circles

2. Players take turns, each player can place one sign on one field per turn, then the turn changes

3. Players cannot put their sign on the other player's sign - the space has to be blank

4. To facilitate multiple games as well as quitting, bind a button (we will use A) to clear the playing field and
reset the game

We will concern ourselves with those two for now and as we learn more about video game logic, we will
improve upon this example. We know that there are 9 spaces on the game field - this makes it convenient for
us to create 9 sprites - one on each space and change their frames depending on who clicks on them. We can
use a loop to facilitate even spacing of the sprites.

Touching the screen within the boundries of the sprite will change the frame, but only when the frame is equal
to 0 (blank frame, as seen above). The frame to which we change will be dependant on the turn - turns that
are not divisible by 2 (1, 3, 5 and 7) belong to one player, the rest (0, 2, 4, 6, 8) to the other one.

We know everything! Now we can begin coding, do note the Comments in code:

https://i.imgur.com/V1vWf.png
https://i.imgur.com/fwx8A.png
https://i.imgur.com/lnbFE.png

CODE
/*

Include block

*/

// Includes C
#include <stdio.h>

// Includes libnds
#include <nds.h>

// Includes NightFox Lib
#include <nf_lib.h>

// Create a Sprite data structure to hold important information
typedef struct{

u8 ID, X, Y, Frame;
} Sprite_Data;

Sprite_Data Sprite[9];

/*

Main() function block

*/

int main(int argc, char **argv) {

//Set 2D MODE-0 to both ScreensNF_Set2D(0, 0);
NF_Set2D(1, 0);

NF_SetRootFolder("NITROFS"); // Set the Root Directory to NITRO FS

// Initialize Background BuffersNF_InitTiledBgBuffers();
NF_InitTiledBgSys(0); // Initialize Top and Bottom Screen BgSystems
NF_InitTiledBgSys(1);

NF_InitSpriteBuffers();
NF_InitSpriteSys(1);

// Initialize Sprite Buffers
// Initialize Bottom Screen SpriteSystem

NF_LoadTiledBg("TopScreen", "Top", 256, 256); // Load a Background into RAM for the Top Screen
NF_LoadTiledBg("BottomScreen", "Bottom", 256, 256); // Load a Background into RAM for the Bottom Screen

NF_LoadSpriteGfx("Sprite_TicTacToe", 0, 32, 32); // Load our Sprite for the circle, cross and blank
NF_LoadSpritePal("Sprite_TicTacToe", 0);

NF_VramSpriteGfx(1, 0, 0, false);
NF_VramSpritePal(1, 0, 0);

// Load the Gfx into VRAM - transfer all Sprites
// Load the Palette into VRAM

NF_CreateTiledBg(0, 3, "Top"); // Create the Top Background
NF_CreateTiledBg(1, 3, "Bottom"); // Create the Bottom Background

u8 X, Y, ID = 0; // Prepare Variables necessary for the field-generating Loop

for(X=55; X<190; X+=45){ // Loop the X value between 55 and 190, add 45 each Loop
for(Y=32; Y<167; Y+=45){ // Loop the Y value between 32 and 167, add 45 each Loop

NF_CreateSprite(1, ID, 0, 0, X, Y); // Create a Sprite in the designated spot
NF_SpriteFrame(1, 3, 0); // Set its Frame to a blank one
Sprite[ID].X = X; // Remember all the important variables for the Sprite in our Data struct
Sprite[ID].Y = Y;
Sprite[ID].ID = ID;
Sprite[ID].Frame = 0;
ID++; // Next Sprite...

}
}

CODE (continued)

touchPosition Stylus; // Prepare a variable for Stylus data
u8 Turn = 0; // Create a variable to count turns

while(1) {

scanKeys(); // Scan for Input
touchRead(&Stylus); // Read Stylus data

if(KEY_TOUCH & keysDown()){ // If the Touchscreen is touched...
for(ID=0; ID<9; ID++){ // Cycle through all Sprites...

if(Stylus.px >= Sprite[ID].X && Stylus.px <= Sprite[ID].X+32){
// If the Stylus position is within the bounds of a Sprite in question...

if(Stylus.py >= Sprite[ID].Y && Stylus.py <= Sprite[ID].Y+32){
// Between X and X+Width; Between Y and Y+Height...

if(Sprite[ID].Frame == 0){
// If the Sprite's Frame is 0 - meaning it is neither a cross nor a circle

if(Turn%2){ // If it's the cross's turn...
NF_SpriteFrame(1, ID, 2);

// Change the Frame of the Sprite to Frame 2 (cross)
Sprite[ID].Frame = 2;

 // Save the change in our Data Struct for future reference
}
else{ // Otherwise...

NF_SpriteFrame(1, ID, 1);
// Change the Frame of the Sprite to Frame 1 (circle)

Sprite[ID].Frame = 1;
// Save the change in our Data Struct for future reference

}
Turn++; // Next turn

}
}

}
}

}

if(KEY_A & keysDown()){ // If the A button is pressed, clear the playing field
for(ID=0; ID<9; ID++){

Sprite[ID].Frame=0; // Clear Sprite Data
NF_SpriteFrame(1, ID, 0); // Change Frames to blank ones.
Turn = 0; // Reset the game

}
}

NF_SpriteOamSet(1);
swiWaitForVBlank();
oamUpdate(&oamSub);

// Update NFLib's Sprite OAM System
// Wait for the Vertical Blank
// Update the OAM of the Bottom Screen engine

}

return 0;

}

In this code, we learn one new function, which will be useful to us once we learn how to Animate Sprites:

NF_SpriteFrame(Screen, Sprite_ID, Frame);

It's relatively self-explainatory - it changes the Frame of a given Sprite on a given Screen to the one selected - easy-peasy!

Now, analyze the code - here's the Example itself, alongside its source code, if you feel it is necessary to clarify anything, do
post!

https://www.mediafire.com/?fbyzms8xln8lc2o

	Preface
	Chapter 0: Preparing the Enviroment
	Introductory
	Chapter 1: Variables
	Chapter 2: Functions
	Exercise 1: Your first Program

	Chapter 3: Operators in C
	Chapter 4: Conditions
	Chapter 5: Loops
	Chapter 6: Containers of Variable - Structures & Arrays

	Practical use of libnds
	Chapter 1: Input - Keys & Stylus

	Introduction to DS hardware
	Chapter 1 - RAM and VRAM

	Practical Use of NightFox Lib
	Chapter 1 - Nightfox Lib Integration Part 1
	Additional Utilities - Chapter 1 - GRIT

	Chapter 2 - NightFox Lib 2D MODE-0 Pt 1 - Tiled Backgrounds
	Sample Code

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

